193 research outputs found

    Surface properties of chitin-glucan nanopapers from Agaricus bisporus

    Get PDF
    The structural component of fungal cell walls comprises of chitin covalently bonded to glucan; this constitutes a native composite material (chitin-glucan, CG) combining the strength of chitin and the toughness of glucan. It has a native nano-fibrous structure in contrast to nanocellulose, for which further nanofibrillation is required. Nanopapers can be manufactured from fungal chitin nanofibrils (FChNFs). FChNF nanopapers are potentially applicable in packaging films, composites, or membranes for water treatment due to their distinct surface properties inherited from the composition of chitin and glucan. Here, chitin-glucan nanofibrils were extracted from common mushroom (Agaricus bisporus) cell walls utilizing a mild isolation procedure to preserve the native quality of the chitin-glucan complex. These extracts were readily disintegrated into nanofibre dimensions by a low-energy mechanical blending, thus making the extract dispersion directly suitable for nanopaper preparation using a simple vacuum filtration process. Chitin-glucan nanopaper morphology, mechanical, chemical, and surface properties were studied and compared to chitin nanopapers of crustacean (Cancer pagurus) origin. It was found that fungal extract nanopapers had distinct physico-chemical surface properties, being more hydrophobic than crustacean chitin

    Sensitivity of barley varieties to weather in Finland

    Get PDF
    Global climate change is predicted to shift seasonal temperature and precipitation patterns. An increasing frequency of extreme weather events such as heat waves and prolonged droughts is predicted, but there are high levels of uncertainty about the nature of local changes. Crop adaptation will be important in reducing potential damage to agriculture. Crop diversity may enhance resilience to climate variability and changes that are difficult to predict. Therefore, there has to be sufficient diversity within the set of available cultivars in response to weather parameters critical for yield formation. To determine the scale of such ‘weather response diversity’ within barley (Hordeum vulgare L.), an important crop in northern conditions, the yield responses of a wide range of modern and historical varieties were analysed according to a well-defined set of critical agro-meteorological variables. The Finnish long-term dataset of MTT Official Variety Trials was used together with historical weather records of the Finnish Meteorological Institute. The foci of the analysis were firstly to describe the general response of barley to different weather conditions and secondly to reveal the diversity among varieties in the sensitivity to each weather variable. It was established that barley yields were frequently reduced by drought or excessive rain early in the season, by high temperatures at around heading, and by accelerated temperature sum accumulation rates during periods 2 weeks before heading and between heading and yellow ripeness. Low temperatures early in the season increased yields, but frost during the first 4 weeks after sowing had no effect. After canopy establishment, higher precipitation on average resulted in higher yields. In a cultivar-specific analysis, it was found that there were differences in responses to all but three of the studied climatic variables: waterlogging and drought early in the season and temperature sum accumulation rate before heading. The results suggest that low temperatures early in the season, delayed sowing, rain 3–7 weeks after sowing, a temperature change 3–4 weeks after sowing, a high temperature sum accumulation rate from heading to yellow ripeness and high temperatures (⩾25°C) at around heading could mostly be addressed by exploiting the traits found in the range of varieties included in the present study. However, new technology and novel genetic material are needed to enable crops to withstand periods of excessive rain or drought early in the season and to enhance performance under increased temperature sum accumulation rates prior to heading

    Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications

    Get PDF
    In the e'ort toward sustainable advanced functional materials, nanocellu- loses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entan- gled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modi- fiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional proper- ties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, bio- logical sca'olding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected per- spectives toward new directions for sustainable high-tech functional mate- rials science based on nanocelluloses are described. </div

    Bacterial species associated with interdigital phlegmon outbreaks in Finnish dairy herds

    Get PDF
    Background: Severe outbreaks of bovine interdigital phlegmon (IP) have occurred recently in several free stall dairy herds in Finland. We studied the aetiology of IP in such herds, and the association of bacterial species with the various stages of IP and herds of various morbidity of IP. Nineteen free stall dairy herds with IP outbreaks and three control herds were visited and bacteriological samples collected from cows suffering from IP (n = 106), other hoof diseases (n = 58), and control cows (n = 64). The herds were divided into high morbidity (morbidity ≥50%) and moderate morbidity groups (9–33%) based on morbidity during the first two months of the outbreak. Results: F. necrophorum subspecies necrophorum was clearly associated with IP in general, and T. pyogenes was associated with the healing stage of IP. Six other major hoof pathogens were detected; Dichelobacter nodosus, Porphyromonas levii, Prevotella melaninogenica, Treponema spp. and Trueperella pyogenes. Most of the samples of acute IP (66.7%) harboured both F. necrophorum and D. nodosus. We found differences between moderate morbidity and high morbidity herds. D. nodosus was more common in IP lesion in high than in moderate morbidity herds. Conclusions: Our result confirms that F. necrophorum subspecies necrophorum is the main pathogen in IP, but also T. pyogenes is associated with the healing stage of IP. Our results suggest that D. nodosus may play a role in the severity of the outbreak of IP, but further research is needed to establish other bacteriological factors behind these severe outbreaks

    Reversible Heating in Electric Double Layer Capacitors

    Get PDF
    A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d’Entremont and Pilon [J. Power Sources 246, 887 (2014)], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014)], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006)] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored

    Electrochemically synthesized polymers in molecular imprinting for chemical sensing

    Get PDF
    This critical review describes a class of polymers prepared by electrochemical polymerization that employs the concept of molecular imprinting for chemical sensing. The principal focus is on both conducting and nonconducting polymers prepared by electropolymerization of electroactive functional monomers, such as pristine and derivatized pyrrole, aminophenylboronic acid, thiophene, porphyrin, aniline, phenylenediamine, phenol, and thiophenol. A critical evaluation of the literature on electrosynthesized molecularly imprinted polymers (MIPs) applied as recognition elements of chemical sensors is presented. The aim of this review is to highlight recent achievements in analytical applications of these MIPs, including present strategies of determination of different analytes as well as identification and solutions for problems encountered
    corecore